

LAWRENCE

NAT I ONA L

LABORATORY

LIVERMORE

Performance of Rank-2
Fortran 90
Pointer Arrays vs.
Allocatable Arrays

E. Zywicz

An informal report for communication of compiler
performance issues with Livermore Computing vendors.

October 11, 2005

UCRL-TR-216197

 UCRL-TR-216197

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of

California nor any of their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or the University of California. The views and

opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by

University of California, Lawrence Livermore National Laboratory under Contract W-
7405-Eng-48.

 UCRL-TR-216197

Page 1

Performance of Rank-2 Fortran 90
Pointer Arrays vs. Allocatable Arrays

Edward Zywicz

October 11, 2005

Methods Development Group
Lawrence Livermore National Laboratory

PO Box 808, L-125
Livermore, CA 94551

 UCRL-TR-216197

Page 2

Introduction
The computational performance of two-dimensional Fortran 90 arrays defined with the
pointer attribute were compared to identically sized arrays defined with the
allocatable attribute. The goal of this work was to quantify the computational cost
of using each array type within a high-performance finite element setting.

Test Program
A test program was developed that mirrors how the main 2-D arrays are employed within
the explicit finite element code DYNA3D. The test code first allocates the array (3 by
1,000,000) and then calls a subroutine 1000 times with the array and the array size as its
calling arguments. The CPU time necessary to complete all 1000 calls was measured.
The Fortran coding for each variant tested was simply:

 call cpu_time(start)
 do i=1,ntimes
 call try_ia_work(ap,size)
 enddo
 call cpu_time(finish)
 time = finish-start

Two types of subroutines were tested. The “working” subroutine type performs
operations on the array and explores both the cost of passing the array to the subroutine
as well as the cost to operate on it. The main sections of these subroutines contain the
coding:

 do i=1,size
 a(1,i) = one
 a(2,i) = two
 a(3,i) = three
 enddo

 do i=1,size
 a(3,i) = a(1,i) + a(2,i)
 enddo

The “passing” type of subroutines merely adds the first two numbers of the array together
and returns. It is intended to explore the cost of passing the array to the subroutine, and
their main sections look like:

 a(1,1) = one
 a(2,1) = a(1,1) + one

 UCRL-TR-216197

Page 3

Various combinations of array types, subroutine types, subroutine interfaces, and calling
statements were explored. In the main calling routine, the main array had one of two
attributes - allocatable or pointer. In the subroutine, the main array had a
declared size and, in some cases, was assigned the pointer attribute. In general, the
array was passed with an implicit range (call try(a,nsize)); however, in some
cases, the array range was explicitly specified (call try(a(1:3,1:Nsize))).
When admissible, both explicit and implicit interfaces were tested; when the array in the
subroutine was assigned the pointer attribute, only explicit interfaces are permitted.
Both working and passing types of subroutines were tested for all permutations. Table 1
summarizes the 14 different combinations considered.

Table 1: Permutations Examined

Case # Main Routine -
Array Attribute

Subroutine -
Array Attribute

Subroutine
Type

Interface Range
Specified

1 Allocatable None Working Implicit No
2 Allocatable None Passing Implicit No

3 Allocatable None Working Explicit No

4 Allocatable None Passing Explicit No

5 Pointer None Working Implicit No
6 Pointer None Passing Implicit No

7 Pointer None Working Explicit No
8 Pointer None Passing Explicit No
9 Pointer None Working Implicit Yes

10 Pointer None Passing Implicit Yes
11 Pointer None Working Explicit Yes

12 Pointer None Passing Explicit Yes

13 Pointer Pointer Working Explicit No

14 Pointer Pointer Passing Explicit No

Contained in the Appendix is the full source code listing for the test program.

Results
The program was compiled and run on four different platforms using their default Fortran
compiler. The four platforms tested were:

1) Krakov (SGI R14,000) using f90 (version 7.4.2m) with –O3 –mips4 -64,
2) ILX (Intel Xeon) using ifort (version 8.0) with –O3,
3) GPS (Compaq Tru64) using f90 with -fast,
4) uP (IBM Power5) using xlf90 with –O4.

Table 2 contains the average CPU times from three runs on each platform.

Table 2: CPU times (seconds – average of 3 runs)

 UCRL-TR-216197

Page 4

Case # SGI - Krakov Intel Xeon - ILX Compaq - GPS IBM Power5 - uP

1 40.5 25.3 18.9 1.14
2 1.21e-4 0 0 0
3 40.6 26.4 19.0 1.16
4 1.24e-4 0 0 0
5 40.5 26.0 18.9 1.16
6 1.31e-4 0 0 0
7 40.5 27.34 18.9 1.16
8 1.57e-4 0 0 0
9 168 25.6 18.9 5.88
10 129 0 0 4.77
11 169 25.4 18.9 5.85
12 129 0 0 4.79
13 36.2 24.8 25.8 3.53
14 1.32e-4 0 0 0

Analysis of Results

SGI platform:
The results for the SGI suggest that as long as you do not explicitly declare the array
range on the calling line (cases 9-12), the performance is not significantly impacted by
what attributes an array has or how it is passed to a subroutine (cases 1-8; 13-14).
However, arrays declared with the pointer attribute and passed with an explicit interface
(cases 13-14) perform slightly better, ~10% faster. Given the drastic increase in CPU
time when the array ranges are explicitly specified on the calling line (cases 9-12), one
might assume that a “copy-in/copy-out” operation is being performed. Clearly, specifying
the array ranges should be avoided when possible.

Intel Xeon platform:
The performance on the Intel platform is completely independent of the coding style or
attributes used. Unfortunately, the averaged results summarized in Table 2 are somewhat
misleading due to machine utilization. Often, one of the three values averaged was 15%
to 30% larger than the other two, and this variation causes the averaged values to vary a
bit. However, based upon the minimum time for each case, no appreciable difference
exists between the cases examined.

Compaq Tru64 platform:
There is no difference in performance with coding style or attributes used, except when
the array has the pointer attribute in both the main routine and the subroutine (cases 13-
14). In the later case there is a marked degradation in performance (~37%).

 UCRL-TR-216197

Page 5

IBM Power5 platform:
On the IBM, as long as you do not explicitly declare the array range on the calling line
(cases 9–12) or assign the pointer attribute to the array in the subroutine (cases 13-14),
the performance is independent of the coding style and array attributes used in the main
routine (cases 1–8). Like the SGI, arrays passed with their ranges explicitly declared are
appreciably slower, and this suggests that a “copy-in/copy-out” operation is occurring.
Furthermore, like the Compaq, a substantial slow down (3 times) occurs when the array
in the subroutine is assigned the pointer attribute (cases 13-14).

Conclusions
In general, explicitly declaring the array ranges in a call statement should be avoided
since it can cause a substantial degradation in performance on some platforms (e.g., SGI
and IBM Power5) and offers no performance benefits. Unfortunately, based upon this
work, no conclusions can be drawn about which array attributes are best to use within a
finite element framework due to vendor variations in the Fortran compilers. The
consistent use of arrays with the pointer attribute (i.e., in the main and all subsequent
subroutines) show marked degradation on select platforms. For example, on the IBM they
are 3 times slower other attribute combinations. This is a shame since the consistent
utilization of pointer arrays is highly desirable within a finite element code, i.e., they do
not have the same language limitations imposed on them as allocatable arrays.

 UCRL-TR-216197

Page 6

Appendix

module type_vars

 implicit none

 integer, parameter:: singR = kind(0.)
 integer, parameter:: fullR = kind(0.d0)

 integer, parameter:: singI = kind(0)

 integer, parameter:: fullI = selected_int_kind(18)

 real(fullR), parameter :: ZERO = 0.0_fullR
 real(fullR), parameter :: ROOT_EPS = 0.0000000596046448_fullR ! 2^(-24) =

5.96046448E-8

 real(fullR), parameter :: ONE = 1.0_fullR

 real(fullR), parameter :: TWO = 2.0_fullR
 real(fullR), parameter :: THREE = 3.0_fullR

 real(fullR), parameter :: FOUR = 4.0_fullR

 real(fullR), parameter :: FIVE = 5.0_fullR

 real(fullR), parameter :: SIX = 6.0_fullR
 real(fullR), parameter :: SEVEN = 7.0_fullR

 real(fullR), parameter :: EIGHT = 8.0_fullR

 real(fullR), parameter :: NINE = 9.0_fullR

 real(fullR), parameter :: TEN = 10.0_fullR
 real(fullR), parameter :: TWOTHIRD = 0.666666666666667_fullR

 real(fullR), parameter :: HALF = 0.500000000000000_fullR

 real(fullR), parameter :: THIRD = 0.333333333333333_fullR

 real(fullR), parameter :: FOURTH = 0.250000000000000_fullR

 real(fullR), parameter :: SIXTH = 0.166666666666667_fullR
 real(fullR), parameter :: EIGHTH = 0.125000000000000_fullR

 real(fullR), parameter :: NINTH = 0.111111111111111_fullR

 real(fullR), parameter :: ROOT2 = 1.414213562373095_fullR

 real(fullR), parameter :: ROOT3 = 1.732050807568877_fullR
 real(fullR), parameter :: PI = 3.141592653589793_fullR

 real(fullR), parameter :: TWOFIVESIX = 256.0_fullR

save

end module type_vars

module tryI

 USE type_vars

 implicit none

 contains

 subroutine try_ia_work(a,size)

 use type_vars

 implicit none

 integer(singI) :: size
 real(fullR),dimension(3,size) :: a

 integer(singI) :: i

 do i=1,size
 a(1,i) = one

 a(2,i) = two

 a(3,i) = three

 enddo

 do i=1,size

 a(3,i) = a(1,i) + a(2,i)

 enddo
 end subroutine try_ia_work

 subroutine try_ia_return(a,size)

 use type_vars
 implicit none

 integer(singI) :: size

 real(fullR),dimension(3,size) :: a

 integer(singI) :: i

 UCRL-TR-216197

Page 7

 a(1,1) = one

 a(2,1) = a(1,1) + one
 end subroutine try_ia_return

 subroutine try_ip_work(a,size)
 use type_vars

 implicit none

 integer(singI) :: size

 real(fullR),dimension(:,:),pointer :: a
 integer(singI) :: i

 do i=1,size

 a(1,i) = one
 a(2,i) = two

 a(3,i) = three

 enddo

 do i=1,size

 a(3,i) = a(1,i) + a(2,i)

 enddo

 end subroutine try_ip_work

 subroutine try_ip_return(a,size)

 use type_vars

 implicit none

 integer(singI) :: size
 real(fullR),dimension(:,:),pointer :: a

 integer(singI) :: i

 a(1,1) = one
 a(2,1) = a(1,1) + one

 end subroutine try_ip_return

end module tryI

program main

 USE type_vars

 USE tryI
 implicit none

!

 interface

 subroutine try_up_work(ap,size)
 use type_vars

 implicit none

 integer(singI) :: size

 real(fullR),dimension(:,:),pointer :: ap

 end subroutine try_up_work

 subroutine try_up_return(ap,size)

 use type_vars

 implicit none
 integer(singI) :: size

 real(fullR),dimension(:,:),pointer :: ap

 end subroutine try_up_return

 end interface
!

 integer(singI) :: i,ntimes = 1000, &

 size = 1000000

!
 real(fullR),dimension(:,:),allocatable :: ax

 real(fullR),dimension(:,:),pointer :: ap => Null()

 real(fullR) :: start,finish

 real(fullR),dimension(14):: mtime = zero

!

! Allocatable array

 allocate(ax(3,size))
 ax = zero

 UCRL-TR-216197

Page 8

 call cpu_time(start)

 do i=1,ntimes

 call try_ua_work(ax,size)
 enddo

 call cpu_time(finish)

 mtime(1) = finish-start

 call cpu_time(start)

 do i=1,ntimes

 call try_ua_return(ax,size)

 enddo
 call cpu_time(finish)

 mtime(2) = finish-start

 call cpu_time(start)
 do i=1,ntimes

 call try_ia_work(ax,size)

 enddo

 call cpu_time(finish)
 mtime(3) = finish-start

 call cpu_time(start)

 do i=1,ntimes
 call try_ia_return(ax,size)

 enddo

 call cpu_time(finish)

 mtime(4) = finish-start

 deallocate(ax)

!

! Pointer array

 allocate(ap(3,size))
 ap = zero

! Pointer to an uninterfaced array

 call cpu_time(start)
 do i=1,ntimes

 call try_ua_work(ap,size)

 enddo

 call cpu_time(finish)
 mtime(5) = finish-start

 call cpu_time(start)

 do i=1,ntimes
 call try_ua_return(ap,size)

 enddo

 call cpu_time(finish)

 mtime(6) = finish-start

! Pointer to an interfaced array

 call cpu_time(start)

 do i=1,ntimes

 call try_ia_work(ap,size)
 enddo

 call cpu_time(finish)

 mtime(7) = finish-start

 call cpu_time(start)

 do i=1,ntimes

 call try_ia_return(ap,size)

 enddo
 call cpu_time(finish)

 mtime(8) = finish-start

! Pointer to an uninterfaced array
 call cpu_time(start)

 do i=1,ntimes

 call try_ua_work(ap(1:3,1:size),size)

 enddo
 call cpu_time(finish)

 mtime(9) = finish-start

 UCRL-TR-216197

Page 9

 call cpu_time(start)

 do i=1,ntimes
 call try_ua_return(ap(1:3,1:size),size)

 enddo

 call cpu_time(finish)

 mtime(10) = finish-start

! Pointer to an interfaced array

 call cpu_time(start)

 do i=1,ntimes
 call try_ia_work(ap(1:3,1:size),size)

 enddo

 call cpu_time(finish)

 mtime(11) = finish-start

 call cpu_time(start)

 do i=1,ntimes

 call try_ia_return(ap(1:3,1:size),size)
 enddo

 call cpu_time(finish)

 mtime(12) = finish-start

! Pointer to an interfaced pointer

 call cpu_time(start)

 do i=1,ntimes

 call try_ip_work(ap,size)

 enddo
 call cpu_time(finish)

 mtime(13) = finish-start

 call cpu_time(start)
 do i=1,ntimes

 call try_ip_return(ap,size)

 enddo

 call cpu_time(finish)
 mtime(14) = finish-start

 deallocate(ap)

!
! Cannot do pointer to pointer without an explicit or implicit interface

!

! Print CPU summary

 print *,"Allocatable arrays"
 print *," CPU time for un-interfaced with work ",mtime(1)

 print *," CPU time for un-interfaced with simple ",mtime(2)

 print *," CPU time for interfaced with work ",mtime(3)

 print *," CPU time for interfaced with simple ",mtime(4)

 print *,"Pointer arrays pointer-to-allocatable range specified"
 print *," CPU time for un-interfaced array with work ",mtime(5)

 print *," CPU time for un-interfaced array with simple ",mtime(6)

 print *," CPU time for interfaced array with work ",mtime(7)

 print *," CPU time for interfaced array with simple ",mtime(8)
 print *,"Pointer arrays pointer-to-allocatable undefined range "

 print *," CPU time for un-interfaced array with work ",mtime(9)

 print *," CPU time for un-interfaced array with simple ",mtime(10)

 print *," CPU time for interfaced array with work ",mtime(11)
 print *," CPU time for interfaced array with simple ",mtime(12)

 print *,"Pointer arrays pointer-to-pointer"

 print *," CPU time for interfaced with work ",mtime(13)

 print *," CPU time for interfaced with simple ",mtime(14)
end program main

subroutine try_ua_work(a,size)

 use type_vars
 implicit none

 integer(singI) :: size

 real(fullR),dimension(3,size) :: a

 integer(singI) :: i

 do i=1,size

 UCRL-TR-216197

Page 10

 a(1,i) = one

 a(2,i) = two

 a(3,i) = three
 enddo

 do i=1,size

 a(3,i) = a(1,i) + a(2,i)

 enddo

 end subroutine try_ua_work

 subroutine try_ua_return(a,size)
 use type_vars

 implicit none

 integer(singI) :: size

 real(fullR),dimension(3,size) :: a
 integer(singI) :: i

 a(1,1) = one

 a(2,1) = a(1,1) + one

 end subroutine try_ua_return

